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Nowy Swiat 72, Poland 
$ Institute of Nuclear Research, Warsaw, Poland 
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Abstract. The question of to what extent the conventional interpolatory function for the 
Gaussian integral G (  w )  pre-determines the standard meromorphic structure within the 
dimensional regularisation, is examined for simplest integrals of perturbation theory. It 
is found that, although it is possible with some generalisation of G ( w ) ,  to obtain a 
meromorphic structure for a simplest one-loop integral, it is not sufficient to ensure that 
higher-order diagrams also have meromorphic structure. An explicit example of such a 
case is found. All generalisations of G ( w )  considered lead to a violation of the gauge 
invariance of the theory. 

1. Introduction 

It has been suggested by several authors that a continuation in the number of 
dimensions may be a convenient regularising technique, especially in the case of gauge 
theories (Speer and Westerwater 1971, ’tHooft and Veltman 1972, Bollini and 
Giambiaga 1972, Cicuta and Montaldi 1972, Ashmore 1972, 1973, Butera et a1 1974, 
Speer 1974a, b, Vega and Schapoinik 1974) (see Leibbrandt 1975, Taylor 1976, 
Slavnov and Faddeiev 1978, Zavialov 1979 and Gottlieb and Donohue 1979 for 
further references). Over the past ten years the dimensional regularisation has proved 
to be an essential tool in QFT. Indeed it not only preserves Slavnov-Taylor identities 
but also avoids infrared problems which appear when subtractions are carried out at 
zero momentum. It has also been proved Speer (1976) that, under some conditions, 
the dimensional renormalisation is equivalent to the analytic renormalisation. The 
fact that within the dimensional renormalisation the Callan-Symanzik function p (g) 
(Callan 1970, Symanzik 1971) is independent of the space-time dimension n (modulo 
a(n  -4)g factor) and also independent of mass ratios which appear in the theory, is 
an additional advantage of this renormalisation. 

The dimensional regularisation procedure originated from a need to give a clear 
mathematical sense to the expression ‘a divergent multidimensional integral’ i.e. to 
define such a notion of such an integral that would allow standard operations of 
algebra and analysis to be performed correctly (e.g. multiplication, differentiation etc). 
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It was found that it is just the theory of complex functions which allows us to give 
some precise mathematical meaning to the phenomenon of non-existence (within the 
measure theory) of such integrals. Roughly, the main step in the prescription for the 
dimensional regularisation of an arbitrary Feynman diagram consists in giving a 
meaning to the relevant integral F ( n )  

L 
(ql,)v n ( k :  - m :  +io)-' 

i = l  

where L is the number of internal lines of the diagram, R the number of independent 
cycles and ki are algebraic sums of qr and external momenta pi, for complex values 
of the parameter n. To achieve it one uses some parametric representation of the 
Green function that allows the integrations over qi to be performed explicitly. This 
can be done e.g. with the aid of Feynman parameters (F-parameters) or the Schwinger 
representation (the a-representation), (we stick to the terminology used by Slavnov 
and Faddeiev (1978) p 158). If F-parameters are used, then one ends up with some 
integrals over Feynman's parameters which are intially defined for natural n only. 
The next step consists in giving a meaning either to a resulting explicit expression 
for F ( n )  (if all integrations over F-parameters were performed explicitly) or directly 
to integrals over F-parameters, for complex values of n. Fortunately, the subtle 
difference between these two steps does not influence the physical results (see appendix 
2 for a discussion of this point). 

When the a-representation is used instead of F-parameters then the problem of 
an extension of F ( n )  to complex n's is reduced to giving a meaning to the Gaussian 
integral 

G ( n )  = J d"q(27r-" exp(-xq2 + 26q), x > 0  (1.2) 

for complex values of n(b" and x do not depend on 4"). It is of some importance to 
be understood that although both techniques yield exactly the same results they are 
only prescriptions, i.e. both are ambiguous. Since this fact is usually put aside in the 
physical literature (but see Butera et a1 1974, Nouri-Moghadam and Taylor 1976, 
Zavialov 1979) we feel a few more words about such ambiguities may be needed. 
Let us consider the typical divergent integral one deals with in any regularisation 
scheme 

I ( n )  = J d"q(q2 - m 2  +is)-'[@ - q)* - M 2  + is]-'. (1.3) 

Using Feynman parameters and performing some standard tricks (see e.g. 't Hooft 
and Veltman 1973, p 79) one gets 

1 

I ( n )  = i a" r (2-  w )  dx[-p2x2+ (pZ-m2+MZ)x + m2]"-* (1.4) Jo 
where 

nEN;" 1 w = z n ,  

and 

(1.5) 
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(see appendix 1 for further explanation of the symbols). The integration over x in 
(1.4) can be performed explicitly and the final result is 

I ( n )  = i.rrn” e ~ p ( i 2 . r r n ) m ~ ‘ ~ ’ ~ - ~ ’  I‘(2-in)F1(l, 2-+n, 2-in,  2; l / x ~ ,  l / x ~ )  (1.6) 

where F l (a ,  6,  c, d ;  U, v )  is Appell’s F1-function (see appendix 2) and x112 = 
{ M 2 - m 2 + p 2 f [ ( M 2 - m 2 + p 2 ) 2 + 4 m  p ] }/2p2. Now the problem of an extension 
of (1.6) to a domain of the complex n-plane must be set. Obviously the most desired 
extension would be just an analytic continuation. However, this is not the case unless 
some a d  hoc additional assumption is made. To illustrate the point let us formulate 
the problem more precisely. The function I ( n )  is defined by (1.6) for any natural n 
and one asks whether it is possible to find a unique interpolating function f ( z )  of 
complex variable z ,  z E D  c @, such that 

2 2 112 

The answer is, of course, known and negative, there exist infinite numbers of such 
interpolatory functions. Any functions of the type 

i ( z )  =i.rrL” e ~ p ( i 2 . r r z ) m ~ ‘ ~ ~ - ~ ’ r ( 2 - t z ) ~ ~ ( 1 , 2 - $ ~ ,  2- lz ,2;  I / X ~ ,  l / x 2 ) c p ( z ) + ~ ( z )  

where p ( t )  and H ( z )  are periodic functions of z of period 1 such that cp(0) = 1 and 
H(O)=O (in general H ( z )  does not vanish identically) can be considered as an 
interpolatory function for I ( n ) .  

So one may wonder what necessary and sufficient conditions must be imposed 
upon an interpolatory function f ( z )  to make a unique choice possible? Unfortunately, 
no such uniqueness conditions are known in the literature. The answer depends on 
the class of interpolatory functions one likes to deal with. Let us consider e.g. two 
interpolating functions I A ( z )  and I B ( z )  which obey (1.7) and let us form the difference 
R ( z )  = IA(z )  - I ~ ( z ) .  Obviously R ( n )  = 0, n E N y .  If we assume further that e.g. R ( z )  
is regular and of exponential type in the half-plane Re(z) 2 0 and its indicator diagram 
is not bounded on the right by a vertical line segment of length 2.rr or more than 
R ( z )  = 0 by virtue of the Carlson-Dufresnoy-Pisot theorem (Dufresnoy and Pisot 
1951) (we have assumed additionally that R ( 0 )  =O).  So if one takes I A ( z )  = I ( z )  and 
I B ( z )  such that the pre-conditions of the CDP theorem are satisfied then I ( z )  is the 
unique interpolatory function among the functions whose difference R ( z )  satisfies the 
CDP theorem. However, one may use a lot of other theorems of such a type (see e.g. 
Boas 1954, Bieberbach 1955, Whittaker 1935) to introduce interpolating functions 
with different properties into the theory. 

Similar problems also arise when one resorts to the a-representation instead of 
F-parameters. The ambiguity within the a-technique is related to the question of how 
one sets the problem of an extension of the Gaussian integral (1.2) to complex values 
of n. The conventional approach consists, of course, in assuming that 

where G(w)= 6(2w) .  Although it is obvious that (1.8) is only the simplest extension 
and many others are, in principle, allowed, it is worth noting however, that a subtle 
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difference exists between F-parameters and the a-representation techniques, concern- 
ing the question of the extension to the complex dimension of the resulting expressions. 
When F-parameters are used, ambiguities related to the non-uniqueness of the 
extension appear when one considers a new integral. This means that contributions 
from different Feynman graphs could, in principle, be extended in different ways, and 
we see no criterion for selection, as there is a virtually unlimited number of possible 
extensions, unless some ad hoc assumptions are made. The a-representation technique 
is free from such an unwanted abundance. Once the Gaussian integral G(w) has been 
defined for w E C then there is no room for further speculation. This probably explains 
why only the a-representation was used by Capper and Leibbrandt in their attempt 
to go beyond the conventional definition of G(w). The latter authors have proposed 
to replace (1.8) by 

J d2"q exp(-xq2+2bq) = r w x - w  exp[b2/x -xf(w)l x>O (1.9) 

where f ( w )  is an entire function which obeys the conditions: 
(i) f ' k ' ( ~ )  = 0 for w = n/2, n EN?, k EN$', ko < CO and ko S 2, 
(ii) Ref(w)>O for any w # n/2 and some Imw # 0 (Capper and Leibbrandt 

1974a, b, c; Leibbrandt 1975). 
Unfortunately, the question of a relationship between the conventional approach 

and the results obtained by those authors has never been settled. Although the 
Capper-Leibbrandt attempt has some drawbacks (see following sections) it neverthe- 
less raises some interesting questions about the singularity structure of Feynman 
diagrams in the complex dimensional plane, such as: 

(a) Is the conventional meromorphic structure (in the n-plane) pre-determined by 
the standard definition of the Gaussian integral G(w) (see (1.8)) or can such a structure 
can be obtained by working with a non-conventional definition of G(w)? 

(b) Is it possible to re-define the Gaussian integral in such a manner that one 
could get a more complicated singularity structure e.g. for a one-closed-loop contribu- 
tion, a logarithmic singularity or, in general, non-algebraic singularity at the physical 
point n = 4? 

Since the singularity structure (in the n-plane) of a given Feynman graph is a pivot 
of the dimensional regularisation, the importance of such questions seems to be 
obvious. The aim of this paper is to examine the above questions. But it should be 
obvious from the beginning that such questions cannot be settled once for all or ab 
ovo usque ad mala. The first is due to the fact that one can invent as many non- 
conventional definitions of G(w) as one wishes. The second is related to the unpleasant 
reality that technical troubles appear at such an early stage of development that one 
is forced to restrict considerations to lowest-order graphs (integrations can usually be 
performed explicitly for lowest-order Feynman diagrams only). 

Thus any such answer would always be only partial and this is an inherent feature 
of the problem. Although the answers we get are always partial, nevertheless we 
think it is of some interest and makes for a better understanding of the dimensional 
regularisation technique to examine the singularity structure (in the complex 
dimensional plane) of the lowest-order graphs that one obtains by employing a 
non-conventional definition of the Gaussian integral. We would like to point out that 
we do not propose a new regularisation procedure for Feynman diagrams. The main 
aim of this paper is to demonstrate that a Capper-Leibbrandt (CL) type approach to 
the question of the dimensional regularisation introduces more problems than it solves. 
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Throughout the paper we employ the standard a-representation for propagators 
and suppose as usual that 

I . . . I d2"ql . . . d"qL[ .$. I d a l  . . . daK.  . . 

m = I . o . I d a l . . . d a K . . . d  2 w  q l . . . d  2 w  qL . . . .  

The last equality, combined with a definition of the Gaussian integral in a complex 
dimensional w-plane, serves, in fact, as a formal definition of an integral in complex 
dimension w which one deals with in a dimensional regularisation scheme (see e.g. 
Taylor 1976, Slavnov ana Faddeiev 1978, Zavialov 1979). Whether such a definition 
is sufficient to ensure a self-consistency of the schemes we consider in the paper, is 
unclear to us. It is known however that the standard dimensional regularisation 
scheme is internally consistent only if certain additional assumptions are made e.g. a 
definition equating massless tadpole integrals to zero (but see Breitenlohner and 
Maison (1977 p 73) for a discussion of IR-renormalised Feynman amplitudes with 
tadpole terms). In the cases we deal with in the paper, there seems to be no necessity 
for the introduction of such ad hoc definitions for lowest-order Feynman amplitudes 
at least. Since our primary aim was to examine a practical importance of the CL type 
schemes and it turned out that they were unsuitable for application, we think that 
additional investigations, in order to check whether the schemes have more internal 
faults, are unnecessary. So we take the stand that the question of self-consistency of 
the CL type schemes is beyond the scope of this paper. 

The outline of the paper is as follows. In § 2 we introduce a one-parameter family 
of definitions of the Gaussian integral in the complex w-plane. Then we evaluate the 
integral d2wq/(27r)2w (q2)', z E @, and discuss the 't Hooft-Veltman hypothesis, 
tadpole and S4(0) terms. The central feature is the discussion of one closed loop and 
some integral associated with the pure graviton triangle diagram for different values 
of N in 9 3. The basic notation is explained in appendix 1 where we also evaluate 
the integral 

W Io dx x'-'{exp[-xN~(~)])K,( 6, "1 -sx) 

for N E  RI-(0,  l/B). In appendix 2 we prove that the integral I ( w )  (see (1.4)) has 
a zero-mass limit and point out conditions under which this limit coincides with the 
relevant massless integral. We consider only the simplest scalar theory throughout 
the paper and no further reference to this proviso will be made. 

2. Gaussian integral, the 't Hooft-Veltman hypothesis, tadpole integral and the 
s4(0) term. 

Prior to postulating a particular form of an interpolatory function for the Gaussian 
integral G(n) (see (1.2)) we remind the reader of the criterion that any such function 
must obey. One requires that any interpolatory function G( w) satisfies the conditions: 

A [G(w)-rWx-" exp(b2/x)]=0, x > o  
W E N ?  

(a) (2.1) 
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(b) there should exist a domain in the complex w-plane such that a sum of 
contributions F, from all Feynman diagrams of a given order is an analytic function 
of w, w E D  c @; one requires also that there should exist a path K such that an 
analytic continuation of Fg from D to some neighbourhood O2 of the point w = 2 is 
possible along K (excluding, in general, the point w = 2). 
The first requirement is obvious and the second is necessary for there to be a theory 
at all. 

Now let us consider a one-parameter family of interpolating functions GN(w) for 
the Gaussian integral G(n)  

GN(w)=[  d2"q exp(-xq2+2bq)= 7rwx-w exp[(b2/x)-xNf(w)] 

n = 2 w ,  W E @ ,  N E R ' ,  INI<W, x > O  
(2.2) 

where although the vector 6" is defined initially only in a natural dimensional space, 
the scalar product bq is also well defined for complex w (see Bergere and David 
(1979) for a definition of the scalar product in dimension w); x is a c-number and 
f ( w )  is any function satisfying the requirements (i) and (ii) given in § 1 (see (1.9)). 
One obtains the conventional interpolatory function Go(w) by taking N = 0 (the 
remaining factor exp[-f(w)] is unimportant). The CL interpolating function (1.9) is 
just Gl(w). 

Each function GN(w) satisfies, of course, the condition (a). However, it is not 
obvious that all GN(w) satisfy the requirement (b). We will give some arguments in 
9 3 that it may not be in the case for N being negative irrationals. Unfortunately, a 
general case is much more complicated than the relevant standard case (see Ashmore 
(1973, theorems 2.1-2.2) and also Speer (1969, theorems 2.17,3.4 and 3.8)) and will 
not be discussed herein. 

The choice of (2.2) as interpolating functions for G(n )  is, of course, arbitrary, but 
the degree of such an arbitrariness is no greater and no less than that in setting f (  w) = 0 
as one usually does. When N # 0 then all interpolatory functions GN(w) have some 
drawbacks. The most important one is that, except at the point w = 2, regularisation 
schemes based on (2.2) preserve Slavnov-Taylor (ST) identities only up to a given and 
fixed order of perturbation theory determined by ko (see (1.9)). This means that any 
such regularisation scheme would occupy an intermediate position, e.g., the analytic 
regularisation which does not preserve ST identities and the standard dimensional 
regularisation that fully preserve them. Another shortcoming is that 

whereas 
a a  

ab, ab, 
axG0(w)=- - G ~ ( W ) .  

This is rather a minor technical drawback but it hinders the application of some useful 
computational tricks. 

The advantages of (2.2) over some other possible non-conventional choices for 
G(w) seem to be its second-to-none simplicity and the fact that it allows calculations 
of the contribution from the scalar one-closed-loop to be performed explicitly (barring 
the interval O<N < 1). So some comparison of our result with the results already 
known is possible and this greatly facilitates discussion. 
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Since the CL interpolatory function Gl(w) has been applied for calculating only 
massless integrals (see Capper and Leibbrandt 1974a, b, c) we will discuss also only 
the massless case to get a comparison with that result (the treatment of relevant 
massive cases is obvious and need not be discussed here). 

In the rest of this section we will assume that N E  R'-{O}.  Since for any fixed N 
equation (2.2) defines, in fact, not one function in the w-plane but the set of uncon- 
nected functions (due to the factor ~ T ~ X - ~ ) ,  we suppose that one of them is picked 
up and remains fixed hereafter. 

Now we will check whether the integral 

vanishes for all complex w and all finite non-negative integers n when the definition 
(2.2) is used for calculation. Multiplying both sides of the equality 

by xz- '  and subsequently integrating over x one obtains 

hence 

(2.4) 

Re(z - w)/N > 0, R e z < O  /arg f l <  .rr/4 or larg f I = 7r/4 

i fO<xe(z -w) /N<l  (2.5a) 

(see e.g. Luke (1969) 2.1.(1)). 
It is easy to check that no envelope of holomorphy exists for the right-hand-side 

of (2.5). This means that (2.5) may be analytically continued outside the domain 
(2.5a) so (2.5) is well defined as an analytic function of two complex variables ( w ,  t )  
in C2 and one may rewrite (2.5) as 

Inserting z = n, n EN: into (2.6) one gets V(n) = 0 for all complex w and finite 
non-negative integers n, i.e. the 't Hooft-Veltman hypothesis holds also when the 
Gaussian integral is defined by (2.2) and N # 0. The proof fails when N = 0. When 
z = -n then (2.6) yields 

and for n = 1 and N = 1 one obtains from (2.7) the result obtained previously by 
Capper and Leibbrandt (1974a). The last case may be calculated directly with the 
help of (2.2) and the conventional representation for (q2)-' 

X 

(q2)-' = 1 dx exp(-xq2), q 2 > o  
0 
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namely one gets 

= (47r)-" J dx x-" exp(-fxN) 
0 

- w)/NI. = (4.r"Nf-'f'"-''/N 

The last integral has been calculated for Re(1- w ) / N > O .  However, being given in 
terms of analytic functions of w it can be analytically continued from the domain 
Re(1- w)/N > 0 to the whole complex w-plane. The S4(0) terms which appear, e.g. 
in theories which contain two or more derivatives in a nonlinear Lagrangian, may be 
formally replaced by the integral d * " q / ( 2 ~ ) ~ "  within the dimensional regularisation. 
That integral can be calculated explicitly either be invoking equation (2.6) for z = 0 
or by performing the trick 

d2"q q2 

m 

= -(4.rr)-" Jo dx&[x-" exp(-fx")l = 0. 

So the last equation is consistent with (2.6) and the S4(0) vanishes identically as it 
occurs within the CL scheme too. It is worth noting that apart from an 'obvious' equality 

J % Jom dxg(x) exp(-xq2) = (4r)-"  Jom dx g(x)x-" exp(-fxN) (2.9) 

there also exists another equality that can serve as a 'source' of formal definitions of 
integrals in the complex dimension. Namely, it is an equation one gets by applying 
to both sides of (2.4) an operator of fractional derivative DC: (see e.g. Oldham and 
Spanier 1974) and subsequently integrating over x 

m 

= (4r)-"  Io dx g(x)DX"[x-" exp(-fx")] a,€@ 

i.e. 

= jOm dx g(x)D:[x-" exp(-fxN)], Rea a 0  

(2.10) 

(2.1 1) 
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where g ( x )  is a given function of x. The last equality follows from (2.10) and the 
relations 

1 --a =-,F1( X ,I-&) R e a a O .  
r(i+ i -  

Attempts to calculate the right-hand side of (2.11) for some trial functions g(x) quickly 
lead to conclusions that there seems to exist no universal form for D;[x-" exp(-fx")] 
which would serve our purpose for an arbitrary g ( x ) .  So we will give below three 
different forms for D : [ X - ~  exp(-fx")] that seem to be useful for future applications. 
The equality 

(2.12) 

which holds for an arbitrary N E C may be rewritten for N > 0 in the form 

where the Fox H-function is defined by the contour integral 

ds h ( - s ) f 5 .  

( 2 . 1 3 ~ )  

Further 

(2.13b) h ( s )  = 

O s n s p ,  l s m s q ;  a,(i = 1 , .  . * , p ) ,  Pk(k = 1 , .  . . 4 )  

are positive numbers and C runs from s = a + i k  to s = a - i k .  Here k is a constant 
with k > IIm b,/P,I (r = 1, . . . , m )  (see Braaksma (1963) for further restrictions on 
a l ,  PSI a;, bs) .  For the case we deal with (see (2.13)) 

n;=, r(i-aj+ajs)n;=l r(b,-Ps) 
nlp,n+l T ( a i - a j s ) I I L m i l  r ( l - b , + p s )  

and w is a complex number such that A + 1 - w + vN # 0, A, v, A = 0,1 ,2 ,  . . . , and C 
is a contour such that the points s = -A (s = (v + 1 - w ) / N )  lie to the right (left) of C 
respectively, while further C runs from s = a + i k  to s = a - i k ,  k > O .  The relation 
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(2.13) is especially useful whenever g ( x )  = Z1 dixCi since, in such a case, the integral 
on the right-hand side of (2.10) is simply a sum of Mellin transforms of Hi;: and can 
be calculated immediately with help of the well known formula 

(2.14) 

where HE:, h ( s )  are defined by (2.13a), (2.13b) respectively. Since (2.13) does 
not hold for negative or complex N's then we will use the generalised Leibnitz rule 

to calculate D,"[x-' exp(-fx")] for N E  @. Simple calculations yield 

D C: [x - " exp(-fx )I 

When N = -K, KEN; then (2.12) may be rewritten as 

(2.16) 

where 6, = ( w  + r - l)/K, a, = b, + a/K,  r = 1,2,  . . . , K. 
Assuming g(x) = x a  in (2.11) and using equations (2.13) and (2.14) one may check 

that for N>O the equality (2.6) follows from (2.10) too. Similarly (2.11) and (2.16) 
yield (2.6) when N = -K and g ( x )  = xa (see Luke 1969, 3.6 (17)). 

Finally we calculate the integral 5 d2"q/(2~)2"(q2 + 2pq +a)-', z E C. Substituting 
b = -xp into (2.2) one gets 

exp[-x (q2 + 2pq + a )I = (~T)-"x-" exp(xp2 - xu - fx N), 
d2"q 

JW 
Multiplying both sides of the last equality by XI-' and integrating over x one finds 

and 

(2.17) 

where either 

or 
n ( w - z - n ) / ~  n f 2 - w  

r( N )/")" 
(47r-" sgn N U ( w , z ) = - -  (p'-a) f 

r ( z )  N n = O  
(2.176) 
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It is easy to see that ( 2 . 1 7 ~ )  yields, for N = 0, the well known formula (apart from 
an inessential factor exp f) (see e.g. Leibbrandt (1975, A l ) )  

(a --p2)"-'r(z - w )  expf ( 2 . 1 7 ~ )  
(4T)-" 

(q2 + 2pq + U ) - z  = - 
d2 "q 

1 
and for N = 1 one obtains from ( 2 . 1 7 ~ )  

(see e.g. Luke 1969, 6.2.1(2)). Similary (2.17b) yields for N = 1 

= ( 4 T ) - w ( f + ~  - p 2 ) w - z r ( z  - w)/r(z) 
so for N = 1 one gets the unique formula for U(w, 2). 

It is obvious now that for integrals of a type (2.17) the CL regularisation (Capper 
and Leibbrandt 1974a) consists in shifting a mass square a + a + f ( w )  i.e., it is 
equivalent to an introduction of an additional complex mass at the intermediate stage 
of calculations. One may expect then that such a procedure will lead to troubles with 
gauge invariance of the theory and this is indeed the case. 

(2.186) 

It is worth noting that, multiplying both sides of the equality 

J dzWq(2~) - "  exp[-x(q2+2pq + a) ]  = (4.rr)-"x-" exp[-x(a -p2+f)],  

(i.e. N = l ) ,  by x-'G~;"(ssxlba~) and integrating over x one obtains 

X [  fi T(w+a-b i )  fi r ( l + a , - w - a )  
i = m + l  r = n + l  

(see Luke 1969, 5.6.1(1), 5.6.2(1), 5.6.3.(1)). Integrals of this type may be useful in 
theories with non-polynomial Lagrangians where some Green functions are related 
to Meijer's function Grr. The main result of this section is that neither the 't Hooft- 
Veltman hypothesis nor the tadpole integral can serve as a filtering device for an 
elimination of some N's.  
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3. One-loop graph 

The examples we have considered in the previous section are inconclusive concerning 
the question of the choice of values that the parameter N can take to obtain, in 
principle, a reasonable regularisation technique. Obviously, other graphs have to be 
examined to get a more-or-less definite answer to our question. We now turn to the 
simplest one-closed-loop integral 

Using the conventional a-representation 

where q2 > 0 and ( p  - 4)' > 0 one finds that 
CO m 

ISE=T" Io dxJo dy exp(-yp2) I d2"q exp[-(x +y)q2+2y(pq)1. (3.3) 

Applying (2.2) one obtains 

and introducing new variables 1' = x + y, uu = y one gets 

where I ( N )  = ISE and f = f (  w ) .  

we will calculate first the integral 
Since our main aim in this section is an examination of the N-dependence of I ( N )  

1 

K ( u )  = lo du exp[-p2uu(l -U)] (3.6) 

which does not depend on N. 

introducing the new variable t 2  = U (1 - U )  one obtains 
Dividing the interval of integration into two intervals-(O,t) and (i, 1)-and 

2 0 

K ( u )  = io dt  2t ( l  -4t2)-'/' e ~ p ( - b r ~ ) - J ~ ~ ~  dt 2t( l  -4t2)-'/' exp(--bt2) 

1/2 

= 4 jo dt  t(1 -4t2)-'/' exp(-bt2) (3.7) 

where b = p 2 u .  After some trivial manipulations one has 

~ ( u )  = T I o  d x ( l - ~ ) - ~ / ~ e x p ( - b x / 4 ) = - B ( ~ ,  1) J dx exp(-~x/4)xU-'(l-x)'-"-' 
1 1 '  1 

2 0 

(3.8) 
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where a = 1, c = $, i.e. 

K ( u )  = 1F1(1,$; -$b) (3.9) 
(see e.g. Luke 1969, 4.2(1)). 

Inserting (3.9) into (3.5) we get our basic formula for I ( N )  
m 

I ( N )  = T" lo du u(z-w)-llFl(l, $; -p2u/4) exp(-uNf) (3.10) 

which is up to the factor T", the Mellin transform of the function 
1~1(1,5; -p2u/4) exp(-uNf). 

First we calculate I ( 0 )  to check whether (3.10) yields the well known result which 
one obtains by putting N = 0 into the right-hand side of (2.2) and eo ipso into (3.5). 
When N = 0 the right-hand side of (3.10) is the well known integral (see e.g. Erdelyi 
1954, 6.15.1(10)) and one has 

I(O) = e ~ r ~ w ~ 2 ' 2 ~ w ' ~ p 2 ~ w ~ 2 ~ ( ~  - w ) r ( w  - i)r(;)/r(W -f) 
= e - f ~ w ( p 2 ) w - 2 r ( 2 -  w ) r ( w  - i)r(w - 1 ) / r [ 2 ( ~  - I)]. (3.11) 

So equation (3.10), when N = 0, yields the conventional result which one obtains by 
inserting N = 0 into (3.59, for N = 1 the integral is also known and one finds 

~ ( i )  = Twfw-2r(2 - W ) Z ~ l ( i ,  2 - W ;  $; -p2/4f) 1 4 f ~  ip2i (3.12) 
(see e.g. Luke 1969, 3.6(13)). 

1; -p2/4f) and deduce that 
Now we apply Kummer's theorem (see e.g. Erdelyi 1954,2.1.4(44)) to 2Fl(l, 2 - w ; 

(3.13) ~ ( i )  = Twr(2-  W)Cf+p2/4)"-2zF~($, 2- W ;  2; p2/(p2+4f)) 

2 > R e w > 1  Ref  SO. 

Keeping in mind that zF1($, 2 - w ; $; 1) = 4"-2{I'(w - l ) r ( w  - l)/r[2(w - l)]} when 
Re w > 1, we rewrite (3.13) in a more convenient form 

r(w - i)r(w - 1) 
r[2(w - 111 ~ ( i )  = Twr(2-  w )  (P2+4f)W-22F1[f, 2-w; 1; p2/(p2+4f)1/2Fd1) 

(3.14) 

1(1)=1(0)(1 +4f/p2)"-zzFi($, 2-W; %P2/(p2+4f))/zFi(1) (3.15) 

1 < R e  w < 2  

and 

Ref  a 0 .  

where 2Fl( l )=2F1($,2-w;~;  1). 
Performing an analytic continuation of the right-hand side of (3.14) to all such 

complex w so that it is well defined in terms of the theory of complex functions, one 
gets I(1) in other areas of the w-plane. It is easy to see that (3.15) is well defined in 
some domains enclosing the points w k  = fk, k EN:. At these points 

~ ( i )  = Tw(p2)w-2r(2- w){r(w - i ) r ( w  - i ) / r [ 2 ( ~  - i)]}, 

so one sees that 

1 w = % n  n e N r  

n when w = -  n E N 7 .  
2' 

I ( 0 )  = I(1) 
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Since the case N = 1 is just the CL case (Capper and Leibbrandt 1974a) one sees that 
the CL procedure leads to the conventional singularity structure for (3.1) at least. 

Now let us turn to the remaining cases (see appendix 1). When N > 1 then 

(3.16) 

where z = 2 - w. Equation (3.16) implies that I ( N )  has transcendental singularities 
at the points w = in ,  n E No". This means that f(z) would appear in a renormalised 
Lagrangian. Since the conditions (i) and (ii) (see (1.9)) define a class Y(f) of such 
functions instead of a particular function f(z), such renormalised Lagrangians would 
be invariant under the transformation f ( w )  + f ' ( w ) , f ( w ) ~  YCf) , f ' (w)~  YCf). Such 
an additional symmetry of Lagrangians seems to be artificial and lacks physical 
meaning. We consider it as a definite drawback of any such regularisation scheme. 
If such a scheme were adopted then a regularisation of a one-loop integral I(N) 
would consist, in fact, in throwing away the integral. So the self-energy diagram would 
disappear tracelessly from the theory. 

When N is a negative rational then the picture is different. The contribution from 
a one-closed-loop 

(3.17) 

has a simple pole at the physical point w = 2 as it also occurs in the conventional 
scheme (Speer and Westerwater 1971, 't Hooft and Veltman 1972, Bellini and Giam- 
biagi 1972, Genta and Montaldi 1972, Ashmore 1972, 1973, Butera et a1 1974, Speer 
1974a, b, Vega and SchapoSnik 1974). However, the behaviour of I(N) at the points 
w -in, n EN: -{2} differs markedly from the relevant behaviour of I (0) .  Let us 
choose e.g. N = - l /A ,  A EN$,  one then finds 

hence I ( - l /A) = 0 when w < 2 whereas I(O)lW=l has a simple pole (but I (0) lw=1/~ = 0). 
If w > 2 then I(-l /A) has branch poles of high orders at points w = 1 + 4, 1 EN;", and 
ordinary poles of high orders at w = r + 3, r E N? provided that Ako is odd (if Ako 
is even then I ( - l /A)  has ordinary poles of corresponding order at w = 4, 1 EN?). 
An ugly feature of the choice N < 0 is a very sensitive dependence of the singularity 
structure of I(N) on the choice of two arbitrary parameters N and ko (see (1.9)). 
Moreover, a natural tendency to preserve the gauge invariance of the theory up to 
a sufficiently high order of perturbation theory will lead to a really complicated 
singularity structure of I ( N ) .  It has been pointed out in appendix 1 that although 
I ( N )  can be calculated explicitly for negative irrational N's provided 

W E ~ W :  A (2+n-Rew)/ lNI#r ,  r E N ?  
n e N 7  

it is not known whether I ( N ) ,  as given e.g. (A1.4), is an analytic function of w in a 
domain of the w-plane. So such negative irrational N should be avoided. Anyhow, 
even if one were able (we were not) to prove that I(N) given by (A1.4) is, in fact, 
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an analytic function of w in a domain D also in this case, it would not change the 
situation. Such a regularisation scheme would still be very complicated. 

The case 0 < N < 1 remains most complicated. One cannot calculate explicitly 
I(N) for such N's (see appendix 1) by one method and the singularity structure of 
I (N) in the w-plane remains to be found. One may wonder what the difference is 
between N = 1 and e.g. N = -1 cases for I(N). It is easy to see that, by taking N = 1, 
one changes the behaviour of the integrand (see (3.1)) for U -* 03. This corresponds 
to changing, in general, infrared behaviour of the contribution from a one-closed-loop. 
By inserting N = -1 into (3.10) one modifies the ultraviolet behaviour of the corres- 
ponding diagram. Since there exists a domain D in the w-plane such that the integral 
lom du u(2-w) -1  lFl(l, 2; -p2u/4) exists and is an analytic function of w, w E D  then 
neither of the modifications is, in fact, necessary to achieve the goal of a regularisation 
scheme (for a one-closed-loop at least). It is obvious that this property is quite general: 
by taking N a 1 one modifies the infrared behaviour of ISE  (see (3.1)) and by choosing 
N<O one changes the ultraviolet behaviour of IsE. However, this is not the only 
difference between the two cases (i.e. N z= 1 and N < 0). Let us again consider the 
interpolatoryfunctions GN(w) for N = 0, N = 1 and N = - l /A,  A EN?. The functions 
Go(w) and Gl(w) do have a common feature; in a sense, both lead to the same 
singularity structure in the w-plane of one-closed-loop: the integral (3.1) has only 
simple poles at any non-negative integer w. This is not the case when N = - l /A,  
A EN;" ; 'the degree of divergence' of the I ( - l /A)  depends on the dimension of 
space. The higher n a 4  is taken, the larger is the order of the relevant pole; when 
n < 4  all I ( - l / A )  vanish, the first pole appears at n = 4  and is a simple one. After 
n has passed the value, 4 poles of a higher order suddenly appear (we assume that 
Ako is even) and the order of poles is strongly correlated with n-the dimension of 
space- and ko (which determines gauge invariant properties of a regularisation scheme 
fixed by A). The idea that the integral (3.1) could be more divergent as n increases 
does not seem to be unnatural. The fact that the conventional interpolatory function 
Go(w) (see (1.8)) yields for I ( 0 )  the singularity structure which is, in a sense, n- 
independent when n z= 2 ( I (0 )  has only simple poles at n E N?) seems to be a rather 
peculiar feature of dimensional regularisation schemes which were invented to cope 
mainly with infrared problems (e.g. the CL scheme (Capper and Leibbrandt 1974a)). 

Now let us consider an example of the interpolating function for G(n)  which 
modifies both infrared and ultraviolet properties of the integrands in (3.1). Namely, 
let us suppose that 

(3.19) G(w) = ~ " ' x - ~  exp[b2/x - ( x N  + ~ - ~ ) f ( w ) ]  

and calculate ISE (see (3.1)). It is easy to check that this time 
m 

I S E  = r W  lo du u(~-"')-'  1 ~ 1 ( 1 ,  $; - p 2 u / 4 )  exp[-(xN + ~ - ~ ) f ( w ) ]  

(3.20) 

where K , ( z )  is a modified Bessel function (see e.g. Erdelyi (1954, 6.3 (17)). Analytic 
properties (in the w-plane) of (3.20) are rather complicated and there is no point in 
discussing them in any detail here. It is sufficient to point out that 

x l "  2 k  
~ , , ( x )  = - ~ ~ ( x )  In -+- (5) $ ( k  + i ) / r*(k  + 1) 2 2k=O 2 
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where x E R' 

and $(x) is the logarithmic derivative of T(x) (see any textbook on Bessel functions), 
thus ISE has a logarithmic singularity at least at the physical point w = 2. Obviously 
interpolatory functions (3.19) are practically useless and mere curiosities. 

One can generalise this conclusion to diagrams of higher order by considering the 
Schwinger parametric form of Feynman integrands and using (2.2) as interpolatory 
functions for the Gaussian integrals. It is obvious that by taking N > 1 ( N  < 0) one 
makes an ad  hoc assumption that Feynman integrands are more infrared (ultraviolet) 
divergent than is assumed when (1.8) is substituted. One may, of course, be tempted 
to modify both ultraviolet and infrared behaviour of Feynman integrands by playing 
with a formula of the type (3.19). However, from the results obtained by Anikin et 
a1 (1980) it follows that a strong interplay exists between ultraviolet and infrared 
divergencies in massless theories. So it could happen, in principle, that regularisation 
schemes based on such interpolatory functions (3.19) would be internally inconsistent 
i.e. that catastrophic singularities in the w-plane (see Anikin er al (1980) for the 
explanation of this term) could appear in the theory. The standard interpolatory 
function (1.8) is most safe in this respect (a self-consistent scheme when both massive 
and massless particles are present has been constructed recently by Breitenlohner 
and Maison (1977), (see also Collins 1975, Bergere and David 1980) and interpolating 
functions of the type (3.19) seem to be most dangerous for self-consistency of the 
theory. To round up this section we consider the integral associated with the pure 
graviton diagram 93 = d2"k[k2(k - ~ 2 ) ~ ( k  + P $ ] - ~ .  

After some calculations one gets with the help of (2.2) 
m 1 1 

,93 = 7rw lo dz z2-" exp(-fzN) lo dx x Io dy exp(-zA) 

where 

p1 =-(P2fP3) 

A = x{(l  - x ) [ - a y  (1 - Y )  +P(1  - Y )  + Y Y I +  ay (1 - Y)) 
2 2 

=p1, P =P:, y = p 3 .  

Let us assume further that p 2  = - p 3 ,  p :  # 0; one gets for this particular momentum 
configuration 

Jo 

The last integral may be calculated easily (see appendix 1) and when N = 1 one obtains 

,93 = 7rwr(3 - W)(f+P/4)W-32F1(4; 3 - W ;  t ;  p/ (p  +4f), p2 = -p3 

so a singularity structure of J3 at the physical point w = 2 is determined entirely by 
the behaviour of 2F1 at this point. Since it is known that if c - a - b  = O  then 
2Fl(a, b ;  c ;  z )  has a logarithmic singularity (see e.g. Klein 1933, p 18) then J3 has a 
logarithmic singularity at w = 2 when p 2  = -p3  and N = 1 (in fact 2F1(& 1; ?; z 2 )  = 
(1/22)log[( l+z)/ ( l -z)];  see Slater 1966, (1.5.3)). This behaviour of J3 at w = 2  
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sharply constrasts with the standard pole singularity one gets when N = 0 
a 

8 ; 3 ( 0 ) =  r W  jo dz z ( ~ - ~ ) - '  iFi(1, i; -Bz/4) 

= .rrw+1/2(p:/4)W-3r(3 - w)r(w -2)/2r(w -3/2). 

Unfortunately, this fact remained unnoticed in Capper and Leibbrandt (1974a, b, c) 
and Leibbrandt (1975). 

4. Conclusions 

We have found that all non-conventional interpolatory functions for the Gaussian 
integral considered in this paper have some drawbacks concerning their applicability 
within a dimensional regularisation scheme. Although the 't Hooft-Veltman 
hypothesis, the tadpole integral ( 2 . 3 ~ )  and the S4(0) term are insensitive to a choice 
of N in ( 2 . 2 ) ,  the one-loop integral (3.1) can serve as a filtering device for N. 

We have demonstrated that when N > 1 then GN(w) leads, in general, to non- 
algebraic singularities and should be avoided. The CL interpolatory function G1( w )  
yields the usual pole structure for a one-loop integral at the physical piont. w = 2. 
However, Gl(w) yields a very complicated momentum dependence for the integral 
J3 related to the pure graviton triangle vertex, and for some momentum configuration 
Gl(w), leads to a logarithmic singularity for J3. We consider this property of Gl(w) 
as definitely undesirable. The distinct feature of GN(w) taken for some negative 
rational N's (e.g. N = - l /A ,  A E N ? )  is that it is possible to correlate orders of poles 
which appear when considering I ( N )  with the dimension of space (branch poles should 
be avoided anyhow). However, even in the simplest N =-1 case, the resulting 
singularity structure of I(-1) is very complicated. 

Our final conclusion is that since it is now known that, within the standard 
dimensional regularisation scheme, both massive and massless theories (the most 
important at least) can be treated in a consistent manner (see e.g. Breitenlohner and 
Miason 1977, Bergere and David 1980), adeviation of type (2.2) from the conventional 
interpolatory function Go( w), offers no significant improvement. 

Appendix 1 

The following basic notation is used throughout the paper: the set of all real numbers 
is denoted by R' ,  RA = R'-{0}, the set of all non-negative integers is denoted by 
N?, a set {NF -{O, 1 , 2 ,  . . . , k - 1)) is denoted by N?. The set of all complex numbers 
is denoted by @. In this appendix, the symbol f ( z )  denotes an entire function of z 
such that Ref(z)>O. Sometimes we simply write f instead of f ( z )  to make the 
formulae more compact and clear. We often employ the contracted notation for the 
generalised hypergeometrical function 

(see e.g. Erdelyi 1953, 4.1.(1), or Luke 1969, 3.2(1)) and write it in the abbreviated 
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forms either 

i.e. 

When there is no possibility of confusion, we simply refer to (Al . l )  as pF,. We assume 
that no denominator parameter bi, i = 1, . . . , q is a negative integer or zero. We also 
put T(a + n) / I ' (a )  = ( u ) ~ .  Furthermore we introduce the function L(N, z ,  s, f )  defined 
by equation (A1.2): 

m 

L ( N , z , s , f ) = j  0 dxx2- ' J? , (~~I  -sx) exp(-xNf(z)) (Al.2) 

where p = q + 1 - B, B E {1,2, . . . , q + l}, N E  R ', Re f(z) > 0. We often simply write 
L ( N )  instead of L(N, z ,  s,f) to simplify the notation. It is assumed throughout this 
appendix that, when N <O,  then parameters ( a l , .  . . , a,; b l , .  . . , b,; z ;  s) are taken 
such that the conditions under which the formula 3.6(17) given in Luke (1969, p 60) 
is valid are satisfied in our case too (the restriction Re z > 0 is unnecessary when N < 0). 

Since many more common special functions can be expressed in terms of pF, we 
feel that an explicit form of L(N, z ,  s, f )  may be of some interest for mathematical 
physics. We were unable to find L(N) ,  except when N = 0 or N = +1/A and f(z) = 
constant, in the literature (see Erdelyi 1954, 4.23(19)) so we calculate it in this 
appendix. One can prove (Kalinowski et a1 1980) for detailed proof: 

(i) N > 1/B or N = 1/B and Is/(Nf)l'NI < 1. If N > 1/B v (N = 1/B) A 

Is/(Nf)'"I < 1) then 

and L(N, z ,  s, f) is a multiple-valued analytic function of z. When N = 1/A A 1 s A s 
B A A E N ?  then 

( A l . 3 ~ )  

(ii) N < O  
If NCO and z E U, U = { z :  A nENq(Re z +n)/lNl# r, T E N ? }  then 

the last series converges whenever z E U. If N is a negative rational then L(N, z ,  s, f) 
given by (A1.4) is a multiple-valued analytic function of 2. When N = -l /A, A E N ?  
then 

a1, * .  * , ap =AfAz(-Az)$ ( bl, . . . , b,, z + 1/A,.  . . , +(A - l) /A, z + 1 
( A 1 . 4 ~ )  
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Appendix 2 

In this appendix we will demonstrate that the zero-mass limit of I ( n )  defined by (1.4) 
exists and under some additional (but trivial) conditions it coincides with the relevant 
massless integral. 

Define 

then 

2 
1 ,2 -  W, 2-  W, 2; 

1 + (1 +4m2/p2)1’2’ 1 - (1 +4m2/p2)”2 

=exp(i4rw) lim (m2)w-2Fl(1, 2- w, 2- w, 2; 1, - p 2 / m 2 )  
m2+0 

(Appell and Kampe de Feriet 1926, ch I, equation (15), p 15). Now let us assume 
that Re w = 2 + E ,  E > 0, to use safely Abel’s lemma. Since 

and 

(Erdelyi 1953, 2.9(4), 2.1(14)) then 

So the zero-mass limit of the integral I ( n )  exists and, up to the factor exp(i4rw), 
coincides with the relevant massless integral. It is interesting to trace how the factor 
exp(i4rw) appears. It is easy to see that this factor appears due to the fact that we 
defined the interpolatory function for I ( n )  as 

1 

I(w) = i r ” r ( 2 -  w )  dx[-pZx2+(p2-mZ+MZ)x + m2Iw-’, W € C  Io 
(see (1.4)). Had we first calculated this integral for w = 4 2 ,  n E N ? ,  then the factor 
exp(i4rw) disappears (exp(i2rn) = 1, n E N ; ) .  Obviously the presence of this factor 
does not influence the results for natural n’s. However, it leads to some discrepancy 
for n = (2k + 1)/2, k E No“. And we conclude that the best way to avoid such problems 
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is to calculate I ( w )  first for natural n and only then make an extension of the result 
to complex n's. 

Finally we define Appell's F1-function for the convenience of the reader: 

Re a >0,  Re ( y - a ) > O  

(see Appell and Kempe de Feriet 1926, ch 11, equation (4), p 29). This function 
appears, in fact, quite often when one deals with problems of the dimensional 
regularisation it is easy to see that e.g. the integrals which appear in Cicuta et a1 
(1980, equations (6) and (11)) can be expressed in terms of Fl(a, p, p', y ;  x ,  y ) .  
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